
The Role of Context in Query Input:

Using contextual signals to complete queries on

mobile devices

Maryam Kamvar

Google Inc., Mountain View, CA
Columbia University, New York, NY

mkamvar@google.com

Shumeet Baluja

Google Inc.,
Mountain View, CA

shumeet@google.com

ABSTRACT

The difficulty of entering queries from impoverished keyboards

impedes the use of web search on mobile devices. On average, it

takes a mobile user approximately 60 seconds to enter a query

from a 9-key keypad [1]. In this paper, we explore the use of

contextual signals to facilitate query entry on mobile phones. We

present a query prediction system which offers automatically

generated word completions as the user is typing her query. The

query prediction system redefines the prediction dictionary after

considering contextual signals such as the application being used

(e.g. search vs. general text messaging), the inferred location of

the user, the time of day and day of week. We demonstrate a

46.4% improvement in query entry, measured by number of key

presses needed to enter queries. We found that the two contextual

signals that make the largest impact are knowledge of the

application being used and the location of the user.

Categories and Subject Descriptors
H.5.5 [Information interfaces and presentation] (e.g., HCI):

Hypertext/Hypermedia

General Terms
Experimentation, Measurement, Human Factors

Keywords
Mobile search, query, word completion, context, web search,

query prediction

1. INTRODUCTION

As internet access becomes available from an increasing variety of

places, times and devices, the need for understanding the context

from which a user is interacting with information will grow.

Incorporating a user’s context in web search has been shown to

improve the quality of search results returned to the user in

several ways: by directing the level of granularity of the results

that are returned, by influencing the sort order of those results and

by helping format them. In this paper, we show the benefit of

considering context before the user issues a query. We explore the

use of context with the goal of facilitating query entry through a

query prediction system. Although our system can be used in

conjunction with any typing interface, we focus our attention to

the mobile search environment where it can have the largest

impact on the user experience.

To perform a search on typical mobile devices, users must enter

their query using a 9-key keypad. These small keyboards have

been shown to hinder query entry; it takes a mobile user

approximately 60 seconds to enter the average mobile query from

a 9-key keypad [1]. The average mobile query is 2.3 words and

15.5 characters long [1]. Our goal is to reduce the time to enter a

query by requiring the user to enter fewer letters per query.

The system presented in this paper reduces the key presses needed

to enter a query by offering word completions as the user is

typing. If the suggested completion is correct, the user can accept

it with a single key press; if it is not correct, the user can continue

typing as normal. To generate the completion, the system

considers contextual signals such as location, time, and day of

week. Additionally, we examine the use of a contextual signal

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’04, Month 1–2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Figure 1: An example query prediction interface used with

Google mobile search: The user has typed in the letters “al”,

and after considering her location (that she is in San

Francisco, CA) we suggest the most probable completion of

the prefix: “alcatraz” (shown in faded grey)

often overlooked – the context of the task being accomplished;

which in this case is that of typing search queries. An example

scenario is shown in Figure 1: the user has typed in the letters

“al”, and after considering her location (that she is in San

Francisco, CA) we suggest the most probable completion (shown

in faded grey): “alcatraz”.

In order to gain an understanding of which contextual signals are

useful in improving query prediction, we built several query

prediction models. Each model incorporates a different contextual

signal. We find that the two contextual signals that make the

biggest impact in reducing the number of key presses needed to

enter a query are knowledge of the application being used (in this

case a search engine), and the location of the user. When

combining these signals, we obtain a 46.4% improvement over

having no text prediction system, and a 34.9% improvement over

the standard dictionary-based word prediction systems. Signals

such as hour of day, day of week and phone carrier were found to

be less effective in improving prediction quality.

The remainder of the paper is organized as follows: In Section 2,

we provide an overview of related work in two areas: research in

the use of context to improve search systems and existing mobile

text entry systems. Section 3 describes the algorithm used to

incorporate context in the query prediction system. Section 4

describes our dataset, the setup of the query prediction

experiments, and the metrics used to measure the improvement of

each prediction model. Section 5 presents the results of our

experiments. In Section 6, we discuss the impact of different user

interfaces to our prediction models. We close the paper in Section

7 with conclusions and suggestions for future research.

2. RELATED WORK

The use of context in information retrieval systems has been

extensively studied; for an overview of the issues and literature,

the reader is referred to [2][3]. There have been many types of

context considered and numerous methods through which

contextual information has been used. For example, [4] looked at

a user's past behavior to determine attributes about the user's

knowledge of a topic in order to determine how to tailor the

information that is retrieved. [5] describes early work in applying

simple contextual clues to the types of results returned with web

search engines, such as restricting the results to specific

categories, etc. An alternate approach to capturing context on the

web is proposed by Finkelstein[6]; here, a user marks a particular

place in a document pertaining to a subject that they would like

more information. In Finkelstein's system, context refers to the

surrounding words, and is used to bias the types of results

returned in response to the information request.

Other work has attempted to capture physical attributes about a

user's context. [7] explores the impact on the search process when

the user is in an environment in which she faces many

interruptions. In work more closely related to the study presented

here, [8] presents information retrieval and filtering for mobile

device access, and discusses the role of geo-locating a user, for

example with the use of a global-positioning-system device

(GPS). They also consider the modification to the human-

computer interactions that will be required to support contextual

information retrieval and discuss methods of presenting the results

to the user.

Placing our work within the framework of these studies, we

attempt to move the role of context earlier in the search

process. We assert that context is useful before the query is

entered.

It should be noted that there are a variety of systems that attempt

to decrease the time users spend inputting text on their mobile

phone. The systems such as eZiType can be classified as word

prediction systems as they complete the word before all the letters

are pressed, and systems such as T9 (in its common instantiation)

are word disambiguation systems1. iTap is a hybrid which has

both word disambiguation and word prediction capabilities. A

more detailed analysis of each of these systems can be found in

[9]. Our system will work with any of the text entry approaches;

it will not only improve the speed of the text entry, but also

improve the accuracy of the word-disambiguation that systems

such as T9 use.

The core components of each of the above-listed systems are the

user interface and the dictionary which defines the probability that

a word will occur. We employ a simple interface which displays

the suggested word completion in-line as the user is typing. Our

dictionary is dynamic – the probabilities associated with each

word change based on the user’s context.

3. ALGORITHM

To generate a word prediction, we find the word with the

appropriate prefix which has the highest probability of occurrence

in the set of available words. If we choose to incorporate a

contextual signal in the prediction model, we further restrict the

set of words to those which also hold the signal’s value. We can

represent each word’s probability of occurrence as

Probability(word | prefix & context). If the

contextual restrict has yielded an empty set of words (if the

probability of all words in the set are equal to 0) we lessen the

restriction.

Essentially, for each context (or signal value) we redefine the

vocabulary over which the word prediction is generated. For

example, if we are considering the location of the user as context

of the query, the signal value can be any city in the US. If the

user was querying from San Francisco, California, we would

restrict the set of words considered for auto-completion to those

prior queries which were also made in San Francisco. If the set of

available words is empty, for example if there were no queries

made from San Francisco, we expand the set of available words

by lessening the restrictions – we might allow queries made

anywhere in California to be considered.

4. EXPERIMENTS

In order to gain an understanding of which contextual signals are

useful in improving query prediction, we built several query

1 The difference between word prediction and word-

disambiguation systems should be noted. Word disambiguation

systems interpret the key presses as the most likely word (i.e.

typing “73776625492846” is equivalent to typing

“personalization”). Word prediction systems try to predict the

word “personalization” before all the keys are pressed. The

latter (word prediction) is the focus of this paper.

prediction models. Each prediction model incorporates a different

contextual signal, and we tested the model’s accuracy on a set of 1

million queries entered by Google users. We had two different

flavors of each model – one completed a single word at a time,

and the other could offer a query-based, or multiple-word

completion.

This section first provides a description of the dataset used for

both training and testing the query prediction models. Section 4.2

provides an overview of our experimental setup and in Section 4.3

details the metrics used to measure the effectiveness our

approaches.

4.1 Dataset

The data set from which context is determined consists of over 6

million randomly sampled incoming queries sent to Google via

Google’s SMS search service. A complete description of the SMS

service is provided in Section 4.1.1. The queries are taken from an

8 month period in 2006 and are sampled from the top 1000 query-

generating cities in the US. All of our data is strictly anonymous;

we maintain no data to identify a user. All of the results we report

are aggregate statistics.

Each SMS request includes the user’s query, the user’s carrier

(mobile service provider), a timestamp, the number of results

returned to the user, and the classification of the query to a query

type (sports scores, weather query, local listing etc).

Only queries originating from US carriers with one or more

returned search results were considered. Although valid SMS

queries include stock symbols, zip codes, movies, etc.2, we

restricted the queries under consideration to be those which are

for local listings. Local listings are not only directory-type

searches, such as for exact businesses (dominos 94114, Walmart

Washington DC), but can also be category searches – eg “pizza

94114”, “sunglasses, Portland,Oregon”).

The location information is explicitly included in the query by the

user; no cell-id or GPS information is associated with a query.

From the set of 6 million queries, we extracted the query’s

location from the query. For example, if the query was “pizza

10023” the query term would be “pizza” and the location term

would be “10023”. Similarly, if the query was “pizza San

Francisco CA” the query term would be “pizza” and the location

terms would be “San Francisco CA”. Our experiments try to

predict only the query terms, not the location terms. The location

terms of each query were translated into a city, county, and state

vector and used as a proxy for the user’s current location.3

Although there is no strict guarantee that the location terms

correspond to the location of the user, we speculate that for most

mobile searchers their location of interest and physical location

are the same.4 For the remainder of this paper, when we refer to

2 The full list of SMS features can be found at

http://www.google.com/sms

3 The process of extracting a location from a query and

converting it to a consistent geo-data structure was developed

elsewhere at Google and is beyond the scope of this paper.

4 Although multiple means of mobile geo-location have been

developed (e.g. Global Positioning System, GPS), there has not

yet been widespread integration of this technology with search

query terms, we refer to the location-independent terms in the

query. When we refer to the location of the SMS user, we refer to

the city, county, state vector generated from the location-terms in

the query.

In order to ensure that our system works well when deployed, the

testing set is extensive and completely independent from the

training set. Our training set was gathered from randomly

sampled queries from January-August, 2006 and we test our

models on a randomly sampled set of approximately 1 million

queries made in September 2006. The use of an independent set

ensures that we do not over-fit our models to the training set, and

the use of time-ordered testing and training ensures a realistic

implementation scheme.

It should be noted that the query word frequencies over the 9

month period for which we collected data are relatively stable for

SMS queries. There were no significant differences in the results

presented from the results generated when we trained on January

data and tested on February data, and when we trained on January

through September data and tested on October data.

4.1.1 Google SMS Interface: Background

For the reader who is not familiar with Google’s SMS-search

service, in this section, we provide a brief introduction to its

features. To perform a Google search via SMS, users in the U.S.

perform the following steps:

1. Start a new text message and type in the search query

2. Send the message to the number "46645" (GOOGL)

3. The user will receive an incoming SMS from Google

with the results of her query. Long results may span

multiple SMS messages.

The format of the search results returned to the user is specific to

the query type. The results presented for a local search are the top

3 of those on the desktop (HTML) interface at

http://local.google.com. If the query is for weather, the user will

get the 5 day weather forecast for the location she has specified. If

the user queries a stock symbol, the current stock price would be

returned along with its open, high, low and average volume

numbers. The full list of query types supported by SMS search is

listed at www.google.com/sms. As previously mentioned, in our

study we only consider SMS queries which are for local listings.

4.2 Experimental Setup
A large number of experiments will be presented in this paper. In

each experiment, we attempt to predict each of the 1 million

queries made in September, knowing as few letters of the query as

possible. We evaluated the performance of both word-based

prediction models and query-based or multiple-word prediction

models for each contextual signal. The word-based prediction

services. Thus, in this study, we must rely on location cues

explicitly entered by the user. Looking forward, for the majority

of queries, integration of GPS will ease the user’s burden of

explicitly specifying her location of interest; the user will only

need to explicitly specify her location of interest if it is different

than her physical location.

models isolate the effects of the contextual signals; in the query-

based models, we exploit the knowledge of common multi-word

queries to further improve the query prediction system.

4.2.1 Word-based Model

Each query was considered on a word-by-word basis. The model

generates a word prediction based on the prefix of the word that

had been entered. If the prediction was the same as the intended

word, the word is completed by accepting the prediction (this is

counted as one keystroke). If it was not correct, the next letter of

the word would be appended to the prefix, and the word

prediction would be recomputed based on the new, larger, prefix.

The maximum number of key presses per word is equal to the

number of key presses required to enter the word if there was no

word completion interface available (on QWERTY keyboard, this

would be equal to the length of the word). The minimum number

of key presses per word is two5, because we cannot offer word

completions until the user starts typing and the user must also

expend 1 key press accepting the suggested word.

The first set of experiments assumed query entry on a 9-key

keypad. We assumed that it took 3 key presses to enter a non

alpha-character (numbers and symbols). We also assigned a 0.5

key press penalty for entering consecutive letters on the same key.

For example, according to our calculations the word “bat” would

take 4.5 keystrokes – “b” requires two key presses, “a” requires

one key press and “t” requires one key press. To enter the “a”

after the “b”, the user would either have to press the “next” key or

wait for a the multi-tap to timeout, thus incurring a small penalty.

Below, we examine a simple example, where the intended query is

“apple farm”:

1. Since a user must trigger the system by entering the first

letter of the query, the model attempts to predict a word

based on its first letter; in this case the letter “a”.

Imagine that the word with the highest probability to

complete the prefix “a” is “artist”. This is the word the

user may choose to complete her prefix.

2. However, “artist” is not the correct prediction, so the

next letter of the intended word is appended to the

prefix. This is equivalent to the user ignoring the

suggested word completion, and continuing to type the

next letter of her intended word. A “p” is appended to

the existing prefix, and the model attempts to predict the

most likely completion to the prefix “ap”.

3. At this point the top suggestion is “apple”, and since it

is the intended word, it is accepted. We assume a user

will always accept a correct word suggestion.

4. Thus the number of key presses to enter the word

“apple” using this particular model is 3: one “a”, one

“p” and one “select-completion-key”.

5. When a suggestion is accepted, a space is automatically

appended to the word.

6. “Farm” is the next word to predict, and the model

suggests a completion for the prefix “f”. No word

5 Excluding of course, one-letter words.

completion will be suggested before the user types the

first letter of the word.

7. In this case, the hypothetical system generates “farm”

as the word prediction, so the suggestion is accepted.

8. The word farm is completed in 4 keystrokes, one “f”

(which requires 3 keystrokes on a 9-key keypad) and

one “select-completion-key”.

Using our hypothetical query prediction model, the query “apple

farm” requires seven key presses to enter, as opposed to 17.5 key

presses if no word prediction system was available. Therefore, the

average key presses saved per word predicted is 5.25. Each of our

experiments use a different prediction model to determine the

appropriate completion for the prefix.

4.2.2 Query-based Model

The query-based model is an extension of the word based model.

In this system, if the user accepted a word completion, the query

completion is then automatically suggested to the user. The user

could choose to ignore the query completion, and continue typing

the next word in the query as normal, or accept the query

completion with an additional “select” press.

In the “apple farm” example outlined above, steps 1-4 would be

exactly the same but would continue:

5. When a suggestion is accepted a space is automatically

appended to the word, and a query completion is

generated.

6. In this hypothetical system, the most likely query that

starts with the word “apple” is “apple farm” so “farm” is

suggested as the query completion.

7. The user accepts the query completion with a single

“select” press.

Using the query-based completion model, the query “apple farm”

requires only four key presses to complete; three key presses to

enter and accept the word “apple” and one key press to accept the

query completion “farm”.

4.3 Performance Measurements

To measure the improvement of each model, we use three metrics:

• Percent decrease in the number of key presses required

to enter the set of September queries relative to the key

presses needed to enter the same set of queries without

the aid of any word prediction system.

• Percent of test words successfully predicted by model.

There are two reasons why the model may not predict a

word; first, the word may not exist in the training set.

We are limited to predicting known words. Second,

even if the test word exists in the database, it may not be

the top completion and therefore will not be presented

to the user. For example, lets examine the test word

“car”. If the top word for “c” is “cone”, the top word for

“ca” is “cat”, the word “car” will not have been

successfully predicted by the time it is fully entered.

• Average key presses saved per word predicted.

5. RESULTS

Our experiments were designed to measure the improvement of

query prediction using contextual signals. Section 5.1 discusses

the improvement gained by considering the application in use.

This signal yielded the highest improvement rate. In Section 5.2,

we discuss the results of the query prediction systems which

consider the location of user in addition to the application in use.

Section 5.3 presents the results of the experiments where we

considered the query-specific, but non location-based, signals of

time-of-day, day of week, and cell-phone carrier. Section 5.4

summarizes the results.

5.1 Taking into account the task: querying vs.

messaging

We find that the language of search queries is fundamentally

different than the language used for mobile messaging. Current

mobile text entry systems are tailored to mobile messaging and

use the same dictionary across all mobile text entry tasks. These

systems perform poorly for tasks such as query entry.

In this experiment, we measure the performance of a word

prediction model which uses a standard dictionary and show a

21.9% improvement if we simply replace the standard dictionary

with a task-specific dictionary. Although no mobile text

prediction company would release to us their proprietary

dictionary, we simulate the standard dictionaries by using the

word frequencies found in the British National Corpus (BNC).

The British National Corpus is a 100 million word collection of

samples of written and spoken language from a wide range of

sources, designed to represent a wide cross-section of current

British English, both spoken and written [10].6

The test set for all experiments was the set of ~1 million

September 2006 SMS queries. There were a total of 1,803,470

words and 10,488,231 characters (including spaces between query

words) in the test set. Assuming multi-tap input from a 9-key

keypad the query set would require 22,835,152 key presses to

enter. On average each query had 2.0 words (median = 2, standard

deviation = 1.0) and each word had 5.3 letters (median = 5,

standard deviation = 2.3)

Using the word frequencies generated from the British National

Corpus to train our word prediction model, the number of key

presses needed to enter the test set of queries decreased to

18,797,938; a 17.7% improvement over having no text prediction

system. However, only 51.3% of all query words were

successfully predicted although the vast majority – 86.9% of

query words were present in the BNC. Furthermore, the key press

savings for individual words was consistently small; on average, a

word was predicted when 2.6 characters remained in the word (an

average savings of 5.4 key presses per word) and only 28.5% of

words were completed with three or more remaining letters

(distribution shown in Figure 2). By all our measures, using the

6 Many text prediction systems have enhanced their dictionaries

with emoticons (e.g. “;)” to represent the “wink and smile”

emotion) and common slang (e.g. “l8tr” for later). Their

omission from the BNC does not pose a significant problem

because communication slang and emoticons are not used

widely in mobile queries.

BNC word frequencies to predict queries is minimally effective.

Unfortunately we believe this approximates the performance of

existing word prediction systems that are based on static language

dictionaries for entering search queries.

In considering the task-based context of the text entry we made

our first improvement to the query prediction system by replacing

the general language corpus (BNC) with a set of words which is

more representative of mobile search queries. We train our

prediction models using a past query corpus (PQC) which

contains 5 million queries gathered from Google’s SMS logs from

January-August, 2006. The query diversity of SMS local search is

lower than that of mobile web search [1]. Our training set consists

of 10.5 million words, with approximately 200,000 unique words.

The top word accounts for over 2% of overall query volume and

the top 10% of words accounted for well over 50% of overall

query volume.

We observed a significant decrease in the number of key presses

needed to enter the test set of queries by retraining our prediction

model on a task-specific corpus. 14,683,374 key presses were

needed to enter the test queries using the PQC. This is a 21.9%

improvement over the BNC model and a 35.7% improvement

over having no text prediction system.

Additionally there was a dramatic increase in the percent of query

words successfully predicted to 75.2%. The percent of query

words present in the PQC did also increase, but at a rate lower

than the improvement; the PQC contained 98.9% of test words.

On average, the letters saved per word predicted increased to 3.2

(which translates to an average of 7 key press savings per word)

with the median improving significantly. 49.3% of words were

predicted with 3 or more letters remaining (distribution shown in

figure 2).

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 2 3 4 5 6 7 8 9 10 11 12 13 16

letters saved per word predicted

n
u
m
b
e
r
o
f
w
o
rd
s

prediction using BNC prediction using PQC

Figure 2: Number of words predicted, grouped by letters

saved per predicted word.

Figure 3 is a histogram of average key presses saved for words of

a particular length. With both models, the longer the word, the

more key presses are saved. It is interesting to note that the PQC

model outperforms the BNC model in letters saved for all word

lengths except where word length equals 3 and 18. Perhaps this is

because the common 3 letter words in search queries (and, the)

are better represented in by the BNC word frequencies. We

attribute the BNC improvement in 18 letter words to the sparsity

of words at that length in both the training at testing sets.

0

5

10

15

20

25

30

35

40

45

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 22

word length

a
v
e
ra
g
e
 n
u
m
b
e
r
o
f
k
e
y
 p
re
s
s
e
s
 s
a
v
e
d
 p
e
r

w
o
rd
 p
re
d
ic
te
d

prediction using BNC corpus prediction using PQC corpus

Figure 3: Number of words completed, grouped by number of

letters saved

If we consider the performance of the PQC model with query

completion (versus single word completion), we see a further

improvement: up to a 40.9% reduction in key presses over having

no text prediction system in place. Of the query completions that

were offered, 34% were accurate completions. The tradeoff

between the improvement in query entry and interface clutter

added to the user interface should be evaluated through user

studies. This is left for future work.

5.2 Location Based Signals

In this section, we examine the utility of location based signals for

query prediction. Location-based services (LBS) are often touted

as the “killer” applications for mobile devices. There is strong

evidence indicating that location-based searches are popular

among mobile searchers: a study of Google’s 2005 mobile search

logs found that local searches were the 4th most popular query

category on traditional phones, and accounts for the majority of

searches on PDA devices [1].

The appeal of mobile LBS is the potential to automatically apply

knowledge of the user’s current location to the particular

application. There is ample anecdotal evidence in Google’s query

logs to support the claim that location influences a query. For

example, in El Paso, Texas, movie goers are much more likely to

query for the term “cinemark” than they are “amc” which seems to

be the theatre of choice in most major cities. In Sante Fe, Arizona

and Springfield, Missouri, queries for “sushi” are 1000 times less

likely as in New York City, San Francisco or Los Angeles. The

query “Alcatraz” is queried with much higher probability in San

Francisco, CA than any other city in the US. Similar examples can

be found throughout the logs; this provides an indication that

location-based signals will further improve our system.

In the location based model, we combine the application

knowledge (PQC) with information gained by the location signal.

We use the PQC, but modify the probabilities associated with

each word based on the value of the location signal. In order to

take into account a user’s location, we created a model that

combined the individual probabilities a word would occur in a

city, county and state and country in a linear function; we

essentially created a geo-spatial smoothing function.

The model generates the top word prediction by weighting the

word probabilities generated from each location level:

A*Probability(word | prefix & city) + B*Probability(word | prefix

& county) + C*Probability(word | prefix & state) +

D*Probability(word |prefix). To determine the coefficients for

each probability, we performed a linear regression on the data.

Using the location signal in the word-based prediction model gave

us an overall improvement of 40.1% over having no text

prediction; a 6.8% improvement over using only prefix-based

frequencies from the PQC. The average key presses saved per

word predicted was 7.5 and the percent of words predicted 78.3%.

To further verify that we did not over-train our model, we also

predicted approximately 1 million queries made in October. The

performance measurements were very similar (a 39.7%

improvement over no prediction, and 6.5 % improvement over

using only prefix-based frequencies from the PQC)

The query-based model presents a further improvement to 46.4%

improvement over having no text prediction system, and the

success rate of query completion rose to 40.3%.

5.3 Non Location Based Signals

Knowledge of the user’s carrier, the hour and day of week she was

querying did not improve the query prediction models. As shown

in Table 5, no significant improvement was gained by considering

these signals. There was low variation in performance across each

carrier, hour of day and day of week.

In addition to considering each of these signals alone, we created

smoothed models for the hour and day signals. For the smoothed

hour model, we looked at the probability the word occurred in a

specified hour and if the specified hour was in the morning

(before noon but after midnight) we evaluate the probability that

the word occurred in the morning; otherwise we evaluate the

probability that the word occurred in the evening. We expressed

this as P(word | hour) = A*P(word | hour) +

B*P(word | am_pm) + C*P(word), with the coefficients

defined after performing a linear regression on the data. However

we did not see an improvement with this model; this is due to the

fact that the query diversity did not reduce significantly when we

split the set into morning queries and evening queries.

We also combined these signals with location; for example we

considered the combination of the user’s location and hour of day.

Again, we determined the coefficients through linear regression.

However, we did not see any improvement. In fact, there was a

degradation in performance. We believe the degradation is due to

the sparsity of information created by the number of data

segments required for using these models.

5.4 Summary of Results

Table 1 summarizes the effect of each contextual signal on query

prediction. We improved query entry by 46.4% when taking into
account the contextual signals of user location and application in

use. To provide a baseline comparison to current word prediction

systems, the first row presents results for word-based query

prediction when no signals were considered, as is the case in

standard word prediction systems. We simulate the standard

dictionaries by using the word frequencies found in the British

National Corpus (BNC). Our system presents an 34.9%

improvement over these standard word prediction systems.

By considering contextual signals in word prediction, we not only

decrease the number of key presses needed to enter a query, but

we also increase the coverage of words predicted. Whereas the

BNC predicts only 51.3% of words, we increase the coverage by

to 80.1% when we use the PQC and location signals in the query-

based prediction model.

All of our results are based on the assumption that we can only

show one suggestion to the user. By imposing this constraint on

the user interface, we may not be exploiting the full information

gain inherent to the user’s context. Next, we discuss variations on

the interface, and how they impact the improvement of the system.

6. EFFECTS OF DIFFERENT USER

INTERFACES

In addition to exploring various contextual signals, we explored

the impact of different user interfaces to the query prediction

system. The system presented in this paper assumed one

suggestion was shown to the user, and the user was inputting the

query from a 9-key keypad. This section will show the effect on

the improvements reported when those assumptions do not hold.

6.1 N-word suggestions

Above, we described an interface which will display one query or

word suggestion to a user. This is quite likely the simplest

interface for the user to understand and use. Here, we explore how

much of the potential benefit of our system is lost due to the

interface constraint of showing only one suggestion per prefix.

To do this, we measure if we have improved the probability of

predicting a correct word. At each prefix length we measure the

average number of words with probability of occurrence greater

than or equal to the probability of the target. This number is the

number of words that would be required to be displayed in order

for the user to select the correct target word - this statistic reveals

by what percent we have decreased the space of word prediction

possibilities. The results are shown in Table 2.

By adding the location context, we significantly reduce the

number of queries that we would need to show on average to

produce the correct word completion. The decrease in words

required to be shown is on average 29% better than PQC model.

Table 2: Average number of words with probability of

occurrence greater than or equal to the desired word.

Prefix length PQC Model PQC+ location Model

1 241.5 121.2

2 39.9 20.7

3 6.7 4.0

4 2.2 1.7

We are not suggesting hundreds of words be displayed to the user;

of course this would lead to a terrible user experience. We

quantitatively illustrate the reduction in the prediction space only

to give a sense of magnitude of information that is lost from the

contextual signal when we restrict the interface to one key press.

Additionally, this reduction is significant because it suggests UIs

that display more than one suggestion may be more appropriate

for query completion. Figure 3 shows the improvement curve as

the number of suggestions presented to the user increases. As we

can see, after four suggestions, the rate of improvement decreases.

This can further guide interface design by providing an upper

bound on the number of suggestions which will make a significant

impact on the user experience.

40

45

50

55

60

65

1 2 3 4 5 6 7 8 9 10

number of suggestions shown

%
 i
m
p
ro
v
e
m
e
n
t
o
v
e
r
n
o
 p
re
d
ic
ti
o
n

6.2 QWERTY keyboard

In computing the key presses saved in the experiments outlined

above, we assumed query entry occurred with a 9-key keypad,

which is prevalent on mobile phones. The impact of using a

QWERTY keyboard should not influence the relative

improvement context provides for query prediction because the

Figure 3: Improvement in the query prediction system as a

function of the number of word suggestions shown on the

interface.

Table 1: Summary of Results

% improvement over

no text prediction

average key presses

saved per word predicted

% words

predicted

prediction using British National Corpus 17.7 5.4 51.3

prediction using past query corpus (word-based model) 35.7 7.0 75.3

prediction using past query corpus & carrier (word-based model) 35.8 7.0 75.1

prediction using past query corpus & day (word-based model) 35.7 7.0 74.9

prediction using past query corpus & hour (word-based model) 35.9 7.0 75.1

prediction using past query corpus & location (word-based model) 40.1 7.5 78.3

prediction using past query corpus & location (query-based model) 46.4 8.3 80.1

distribution of letters saved is equal to the distribution of letters

pressed.

We measured the improvement of the location-based prediction

system using the word-based model, assuming the queries were

being entered from a full QWERTY keyboard. The improvement

over having no prediction was 32.8%. This improvement is

slightly deflated from the one reported for query entry on a 9-key

keypad because the number of key presses need to “select” a

word remained constant at 1 across both keyboards. For example,

using multi-tap based measurements, we gained a key press

improvement when the user selected a completion when there was

only one letter left to type in the query (since the average number

of keypresses to specify a letter is 2.2). In contrast, if we assumed

use of a QWERTY keyboard, no improvement would have been

gained by predicting the last letter of a word.

7. CONCLUSION AND FUTURE WORK

We were able to improve query entry by 46.4% when taking the
user’s location and the application context into account. This

paper presents conclusive evidence that context can improve

query entry. We are currently working on designing,

implementing and evaluating the usability of prediction interfaces

that are integrated with a mobile client application.

There are several challenges to implementing this system on a

mobile phone: namely the constrained storage and computation

power of mobile devices. In our initial prototypes, in order to

resolve problems with the phone’s space constraints, we only

store parts of the dictionary that are most relevant to the user’s

current context. Our approach will ease the phone’s burden of

computation by pre-computing word probabilities on the server

side. When there is a change in the user’s context, the server will

be notified via an http request to the server. The server’s response

will indicate to the application how to adapt the word dictionary

to the user’s current context.

Additionally, progress can be made in the design of the user

interface. We have shown the significant improvement that can be

gained by showing more than one word completion at a time.

However, there may be a degradation in user-perceived

improvement if more than one completion is shown. Although the

number of key presses to enter a query decreases, it make take

more time to find and select the desired query completion as the

interface will be more cluttered. Designing interfaces that offer

more suggestions which can be accessed with a low number of

key presses and low cognitive overhead is an interesting avenue

for future study. Perhaps the easiest way to quantify the tradeoff

of more suggestions and cognitive load is by measuring the time

spent entering a query in addition to the key press savings.

Studies are needed to determine whether a non-stable query

prediction system is confusing for users. Is it confusing if the

letter “s” triggers the completion “sushi” when the user in San

Francisco, but triggers the word “soup” when that user visits

North Dakota? Should we provide a means for the user to “turn

off” context-based suggestions, or to artificially set her context

(e.g. by specifying a location other than her current location) ?

In addition to the design, implementation and evaluation of the

user interface, there are several immediate avenues for further

improving query prediction model itself. First, we can improve

upon the model used to generate the predictions. Location based

models may be improved by alternate smoothing methods – such

as ones that use geographical constraints. In these models, the

queries in a nearby city will be taken into account in the query

prediction.

We can also incorporate more signals into the query prediction

model. For example, with a user’s explicit permission, it would be

interesting to study the impact of personalized cues – such as an

individual’s past query behavior, and location history (does the

user live in the location? Is she new to it? What queries does she

frequently submit in new locations?).

Finally, using context to improve other pre-query tasks should be

considered. For example, the task of formulating the query can be

improved by suggesting queries to the user which are most

relevant to her context before she begins typing. This may create a

search interface that eliminates typing altogether from the query

entry process.

8. ACKNOWLEDGEMENTS

We would like to gratefully acknowledge the help of Mehran

Sahami and Daryl Pregibon for their expertise in statistics, and to

Sanjay Mavinkurve for lending his design skills.

9. REFERENCES

[1] Kamvar, M, Baluja S (2006) “A Large Scale Study of

Wireless Search Patterns: Google Mobile Search”, CHI , pp

701 - 709

[2] Jose, J. & van Rijsbergen, C.J. (2004) "Workshop on

Information Retrieval in Context: Report", SIGIR IRiX

Workshop

[3] Freund, L., Toms, E.G. (2005) "Contextual search: from

information behaviour to information retrieval", Annual

Conf. of the Canadian Association for Information Science.

[4] Belkin, N.J., Muresan, G., Zhang, X.M. (2004) "Using User's

Context for IR Personalization", SIGIR IRiX Workshop.

[5] Lawrence, S. (2000) "Context in Web Search", IEEE Data

Engineering Bulletin, V. 23:3, pp 25-32.

[6] Finkelstein, L. et al. (2001) “Placing Search in Context: The

Concept Revisited”, WWW, pp 406 - 414

[7] Toms, E.G., Marche, S., O'Brien, H. Toze, S., Trifts,V.,

Dawe, E. (2004) "Situational Impact on Search", SIGIR IRiX

Workshop

[8] Brown, PJ, and Jones G J F (2001) Context-aware retrieval:

Exploring a New Environment for Information Retrieval and

Information Filtering in Personal and Ubiquitous

Computing, V.5 pp 253-263.

[9] MacKenzie, I S, et al (2001) LetterWise: prefix-based

disambiguation for mobile text input, UIST, pp 111-120

[10] British National Corpus http://www.natcorp.ox.ac.uk

