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ABSTRACT 

The difficulty of entering queries from impoverished keyboards 

impedes the use of web search on mobile devices. On average, it 

takes a mobile user approximately 60 seconds to enter a query 

from a 9-key keypad [1]. In this paper, we explore the use of 

contextual signals to facilitate query entry on mobile phones. We 

present a query prediction system which offers automatically 

generated word completions as the user is typing her query. The 

query prediction system redefines the prediction dictionary after 

considering contextual signals such as the application being used 

(e.g. search vs. general text messaging), the inferred location of 

the user, the time of day and day of week.   We demonstrate a 

46.4% improvement in query entry, measured by number of key 

presses needed to enter queries. We found that the two contextual 

signals that make the largest impact are knowledge of the 

application being used and the location of the user.   

Categories and Subject Descriptors 
H.5.5 [Information interfaces and presentation] (e.g., HCI): 

Hypertext/Hypermedia 

General Terms 
Experimentation, Measurement, Human Factors 

Keywords 
Mobile search, query, word completion, context, web search, 
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1. INTRODUCTION 

As internet access becomes available from an increasing variety of 

places, times and devices, the need for understanding the context 

from which a user is interacting with information will grow. 

Incorporating a user’s context in web search has been shown to 

improve the quality of search results returned to the user in 

several ways: by directing the level of granularity of the results 

that are returned, by influencing the sort order of those results and 

by helping format them. In this paper, we show the benefit of 

considering context before the user issues a query. We explore the 

use of context with the goal of facilitating query entry through a 

query prediction system. Although our system can be used in 

conjunction with any typing interface, we focus our attention to 

the mobile search environment where it can have the largest 

impact on the user experience.  

To perform a search on typical mobile devices, users must enter 

their query using a 9-key keypad. These small keyboards have 

been shown to hinder query entry; it takes a mobile user 

approximately 60 seconds to enter the average mobile query from 

a 9-key keypad [1]. The average mobile query is 2.3 words and 

15.5 characters long [1]. Our goal is to reduce the time to enter a 

query by requiring the user to enter fewer letters per query.  

The system presented in this paper reduces the key presses needed 

to enter a query by offering word completions as the user is 

typing. If the suggested completion is correct, the user can accept 

it with a single key press; if it is not correct, the user can continue 

typing as normal. To generate the completion, the system 

considers contextual signals such as location, time, and day of 

week. Additionally, we examine the use of a contextual signal 
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Figure 1: An example query prediction interface used with 

Google mobile search: The user has typed in the letters “al”, 

and after considering her location (that she is in San 

Francisco, CA) we suggest the most probable completion of 

the prefix: “alcatraz” (shown in faded grey) 



often overlooked – the context of the task being accomplished; 

which in this case is that of typing search queries. An example 

scenario is shown in Figure 1: the user has typed in the letters 

“al”, and after considering her location (that she is in San 

Francisco, CA) we suggest the most probable completion (shown 

in faded grey): “alcatraz”. 

In order to gain an understanding of which contextual signals are 

useful in improving query prediction, we built several query 

prediction models. Each model incorporates a different contextual 

signal.  We find that the two contextual signals that make the 

biggest impact in reducing the number of key presses needed to 

enter a query are knowledge of the application being used (in this 

case a search engine), and the location of the user.  When 

combining these signals, we obtain a 46.4% improvement over 

having no text prediction system, and a 34.9% improvement over 

the standard dictionary-based word prediction systems. Signals 

such as hour of day, day of week and phone carrier were found to 

be less effective in improving prediction quality. 

The remainder of the paper is organized as follows: In Section 2, 

we provide an overview of related work in two areas: research in 

the use of context to improve search systems and existing mobile 

text entry systems.  Section 3 describes the algorithm used to 

incorporate context in the query prediction system.  Section 4 

describes our dataset, the setup of the query prediction 

experiments, and the metrics used to measure the improvement of 

each prediction model. Section 5 presents the results of our 

experiments. In Section 6, we discuss the impact of different user 

interfaces to our prediction models. We close the paper in Section 

7 with conclusions and suggestions for future research.  

2. RELATED WORK 

The use of context in information retrieval systems has been 

extensively studied; for an overview of the issues and literature, 

the reader is referred to [2][3].  There have been many types of 

context considered and numerous methods through which 

contextual information has been used.  For example, [4] looked at 

a user's past behavior to determine attributes about the user's 

knowledge of a topic in order to determine how to tailor the 

information that is retrieved.  [5] describes early work in applying 

simple contextual clues to the types of results returned with web 

search engines, such as restricting the results to specific 

categories, etc.  An alternate approach to capturing context on the 

web is proposed by Finkelstein[6]; here, a user marks a particular 

place in a document pertaining to a subject that they would like 

more information.  In Finkelstein's system, context refers to the 

surrounding words, and is used to bias the types of results 

returned in response to the information request. 

Other work has attempted to capture physical attributes about a 

user's context. [7] explores the impact on the search process when 

the user is in an environment in which she faces many 

interruptions.  In work more closely related to the study presented 

here, [8] presents information retrieval and filtering for mobile 

device access, and discusses the role of geo-locating a user, for 

example with the use of a global-positioning-system device 

(GPS).  They also consider the modification to the human-

computer interactions that will be required to support contextual 

information retrieval and discuss methods of presenting the results 

to the user. 

Placing our work within the framework of these studies, we 

attempt to move the role of context earlier in the search 

process. We assert that context is useful before the query is 

entered. 

It should be noted that there are a variety of systems that attempt 

to decrease the time users spend inputting text on their mobile 

phone. The systems such as eZiType can be classified as word 

prediction systems as they complete the word before all the letters 

are pressed, and systems such as T9 (in its common instantiation) 

are word disambiguation systems1. iTap is a hybrid which has 

both word disambiguation and word prediction capabilities. A 

more detailed analysis of each of these systems can be found in 

[9].   Our system will work with any of the text entry approaches; 

it will not only improve the speed of the text entry, but also 

improve the accuracy of the word-disambiguation that systems 

such as T9 use. 

The core components of each of the above-listed systems are the  

user interface and the dictionary which defines the probability that 

a word will occur. We employ a simple interface which displays 

the suggested word completion in-line as the user is typing. Our 

dictionary is dynamic – the probabilities associated with each 

word change based on the user’s context.  

3. ALGORITHM 

To generate a word prediction, we find the word with the 

appropriate prefix which has the highest probability of occurrence 

in the set of available words. If we choose to incorporate a 

contextual signal in the prediction model, we further restrict the 

set of words to those which also hold the signal’s value. We can 

represent each word’s probability of occurrence as 

Probability(word | prefix & context). If the 

contextual restrict has yielded an empty set of words (if the 

probability of all words in the set are equal to 0) we lessen the 

restriction.  

Essentially, for each context (or signal value) we redefine the 

vocabulary over which the word prediction is generated. For 

example, if we are considering the location of the user as context 

of the query, the signal value can be any city in the US.  If the 

user was querying from San Francisco, California, we would 

restrict the set of words considered for auto-completion to those 

prior queries which were also made in San Francisco. If the set of 

available words is empty, for example  if there were no queries 

made from San Francisco,  we expand the set of available words 

by lessening the restrictions – we might allow queries made 

anywhere in California to be considered.  

4. EXPERIMENTS 

In order to gain an understanding of which contextual signals are 

useful in improving query prediction, we built several query 

                                                                 

1 The difference between word prediction and word-

disambiguation systems should be noted.  Word disambiguation 

systems interpret the key presses as the most likely word (i.e. 

typing “73776625492846” is equivalent to typing 

“personalization”).  Word prediction systems try to predict the 

word “personalization” before all the keys are pressed.  The 

latter (word prediction) is the focus of this paper. 



prediction models. Each prediction model incorporates a different 

contextual signal, and we tested the model’s accuracy on a set of 1 

million queries entered by Google users. We had two different 

flavors of each model – one completed a single word at a time, 

and the other could offer a query-based, or multiple-word 

completion.  

This section first provides a description of the dataset used for 

both training and testing the query prediction models. Section 4.2 

provides an overview of our experimental setup and in Section 4.3 

details the metrics used to measure the effectiveness our 

approaches.   

4.1 Dataset 

The data set from which context is determined consists of over 6 

million randomly sampled incoming queries sent to Google via 

Google’s SMS search service. A complete description of the SMS 

service is provided in Section 4.1.1. The queries are taken from an 

8 month period in 2006 and are sampled from the top 1000 query-

generating cities in the US.  All of our data is strictly anonymous; 

we maintain no data to identify a user.  All of the results we report 

are aggregate statistics.   

Each SMS request includes the user’s query, the user’s carrier 

(mobile service provider), a timestamp, the number of results 

returned to the user, and the classification of the query to a query 

type (sports scores, weather query, local listing etc).  

Only queries originating from US carriers with one or more 

returned search results were considered. Although valid SMS 

queries include stock symbols, zip codes, movies, etc.2, we 

restricted the queries under consideration to be those which are 

for local listings.  Local listings are not only directory-type 

searches, such as for exact businesses (dominos 94114, Walmart  

Washington DC), but can also be category searches – eg “pizza 

94114”, “sunglasses, Portland,Oregon”).   

The location information is explicitly included in the query by the 

user; no cell-id or GPS information is associated with a query. 

From the set of 6 million queries, we extracted the query’s 

location from the query. For example, if the query was “pizza 

10023” the query term would be “pizza” and the location term 

would be “10023”. Similarly, if the query was “pizza San 

Francisco CA” the query term would be “pizza” and the location 

terms would be “San Francisco CA”. Our experiments try to 

predict only the query terms, not the location terms. The location 

terms of each query were translated into a city, county, and state 

vector and used as a proxy for the user’s current location.3 

Although there is no strict guarantee that the location terms 

correspond to the location of the user, we speculate that for most 

mobile searchers their location of interest and physical location 

are the same.4 For the remainder of this paper, when we refer to 

                                                                 

2 The full list of SMS features can be found at 

http://www.google.com/sms 

3  The process of extracting a location from a query and 

converting it to a consistent geo-data structure was developed 

elsewhere at Google and is beyond the scope of this paper.    

4 Although multiple means of mobile geo-location have been 

developed (e.g. Global Positioning System, GPS), there has not 

yet been widespread integration of this technology with search 

query terms, we refer to the location-independent terms in the 

query. When we refer to the location of the SMS user, we refer to 

the city, county, state vector generated from the location-terms in 

the query. 

In order to ensure that our system works well when deployed, the 

testing set is extensive and completely independent from the 

training set.  Our training set was gathered from randomly 

sampled queries from January-August, 2006 and we test our 

models on a randomly sampled set of approximately 1 million 

queries made in September 2006.   The use of an independent set 

ensures that we do not over-fit our models to the training set, and 

the use of time-ordered testing and training ensures a realistic 

implementation scheme.    

It should be noted that the query word frequencies over the 9 

month period for which we collected data are relatively stable for 

SMS queries. There were no significant differences in the results 

presented from the results generated when we trained on January 

data and tested on February data, and when we trained on January 

through September data and tested on October data.  

4.1.1 Google SMS Interface: Background 

For the reader who is not familiar with Google’s SMS-search 

service, in this section, we provide a brief introduction to its 

features.  To perform a Google search via SMS, users in the U.S. 

perform the following steps:  

1. Start a new text message and type in the search query  

2. Send the message to the number "46645" (GOOGL)  

3. The user will receive an incoming SMS from Google 

with the results of her query.   Long results may span 

multiple SMS messages. 

The format of the search results returned to the user is specific to 

the query type. The results presented for a local search are the top 

3 of those on the desktop (HTML) interface at 

http://local.google.com. If the query is for weather, the user will 

get the 5 day weather forecast for the location she has specified. If 

the user queries a stock symbol, the current stock price would be 

returned along with its open, high, low and average volume 

numbers. The full list of query types supported by SMS search is 

listed at www.google.com/sms. As previously mentioned, in our 

study we only consider SMS queries which are for local listings. 

4.2 Experimental Setup 
A large number of experiments will be presented in this paper.  In 

each experiment, we attempt to predict each of the 1 million 

queries made in September, knowing as few letters of the query as 

possible. We evaluated the performance of both word-based 

prediction models and query-based or multiple-word prediction 

models for each contextual signal.  The word-based prediction 

                                                                                                           

services. Thus, in this study, we must rely on location cues 

explicitly entered by the user. Looking forward, for the majority 

of queries, integration of GPS will ease the user’s burden of 

explicitly specifying her location of interest; the user will only 

need to explicitly specify her location of interest if it is different 

than her physical location. 



models isolate the effects of the contextual signals; in the query-

based models, we exploit the knowledge of common multi-word 

queries to further improve the query prediction system.  

4.2.1 Word-based Model 

Each query was considered on a word-by-word basis. The model 

generates a word prediction based on the prefix of the word that 

had been entered.  If the prediction was the same as the intended 

word, the word is completed by accepting the prediction (this is 

counted as one keystroke). If it was not correct, the next letter of 

the word would be appended to the prefix, and the word 

prediction would be recomputed based on the new, larger, prefix.  

The maximum number of key presses per word is equal to the 

number of key presses required to enter the word if there was no 

word completion interface available (on QWERTY keyboard, this 

would be equal to the length of the word). The minimum number 

of key presses per word is two5, because we cannot offer word 

completions until the user starts typing and the user must also 

expend 1 key press accepting the suggested word.   

The first set of experiments assumed query entry on a 9-key 

keypad. We assumed that it took 3 key presses to enter a non 

alpha-character (numbers and symbols). We also assigned a 0.5 

key press penalty for entering consecutive letters on the same key.  

For example, according to our calculations the word “bat” would 

take 4.5 keystrokes – “b” requires two key presses, “a” requires 

one key press and “t” requires one key press. To enter the “a” 

after the “b”, the user would either have to press the “next” key or 

wait for a the multi-tap to timeout, thus incurring a small penalty.  

Below, we examine a simple example, where the intended query is 

“apple farm”:      

1. Since a user must trigger the system by entering the first 

letter of the query, the model attempts to predict a word 

based on its first letter; in this case the letter “a”.  

Imagine that the word with the highest probability to 

complete the prefix “a” is “artist”. This is the word the 

user may choose to complete her prefix.  

2. However, “artist” is not the correct prediction, so the 

next letter of the intended word is appended to the 

prefix. This is equivalent to the user ignoring the 

suggested word completion, and continuing to type the 

next letter of her intended word. A “p” is appended to 

the existing prefix, and the model attempts to predict the 

most likely completion to the prefix “ap”.  

3. At this point the top suggestion is “apple”, and since it 

is the intended word, it is accepted. We assume a user 

will always accept a correct word suggestion. 

4. Thus the number of key presses to enter the word 

“apple” using this particular model is 3:  one “a”, one 

“p” and one “select-completion-key”.   

5. When a suggestion is accepted, a space is automatically 

appended to the word.  

6. “Farm” is the next word to predict, and the model 

suggests a completion for the prefix “f”. No word 

                                                                 

5 Excluding of course, one-letter words. 

completion will be suggested before the user types the 

first letter of the word. 

7.  In this case, the hypothetical system generates “farm” 

as the word prediction, so the suggestion is accepted. 

8. The word farm is completed in 4 keystrokes, one “f” 

(which requires 3 keystrokes on a 9-key keypad) and 

one “select-completion-key”.    

Using our hypothetical query prediction model, the query “apple 

farm” requires seven key presses to enter, as opposed to 17.5 key 

presses if no word prediction system was available. Therefore, the 

average key presses saved per word predicted is 5.25.  Each of our 

experiments use a different prediction model to determine the 

appropriate completion for the prefix.   

4.2.2 Query-based Model 

The query-based model is an extension of the word based model. 

In this system, if the user accepted a word completion, the query 

completion is then automatically suggested to the user. The user 

could choose to ignore the query completion, and continue typing 

the next word in the query as normal, or accept the query 

completion with an additional “select” press.  

In the “apple farm” example outlined above, steps 1-4 would be 

exactly the same but would continue: 

5. When a suggestion is accepted a space is automatically 

appended to the word, and a query completion is 

generated.  

6. In this hypothetical system, the most likely query that 

starts with the word “apple” is “apple farm” so “farm” is 

suggested as the query completion. 

7. The user accepts the query completion with a single 

“select” press. 

Using the query-based completion model, the query “apple farm” 

requires only four key presses to complete; three key presses to 

enter and accept the word “apple” and one key press to accept the 

query completion “farm”. 

4.3 Performance Measurements 

To measure the improvement of each model, we use three metrics:  

• Percent decrease in the number of key presses required 

to enter the set of September queries relative to the key 

presses needed to enter the same set of queries without 

the aid of any word prediction system. 

• Percent of test words successfully predicted by model. 

There are two reasons why the model may not predict a 

word;  first, the word may not exist in the training set. 

We are limited to predicting known words. Second, 

even if the test word exists in the database, it may not be 

the top completion and therefore will not be presented 

to the user. For example, lets examine the test word 

“car”. If the top word for “c” is “cone”, the top word for 

“ca” is “cat”, the word “car” will not have been 

successfully predicted by the time it is fully entered. 

• Average key presses saved per word predicted. 



5. RESULTS 

Our experiments were designed to measure the improvement of 

query prediction using contextual signals. Section 5.1 discusses 

the improvement gained by considering the application in use. 

This signal yielded the highest improvement rate. In Section 5.2, 

we discuss the results of the query prediction systems which 

consider the location of user in addition to the application in use. 

Section 5.3 presents the results of the experiments where we 

considered the query-specific, but non location-based, signals of 

time-of-day, day of week, and cell-phone carrier.  Section 5.4  

summarizes the results. 

5.1 Taking into account the task: querying vs. 

messaging 

We find that the language of search queries is fundamentally 

different than the language used for mobile messaging. Current 

mobile text entry systems are tailored to mobile messaging and 

use the same dictionary across all mobile text entry tasks. These 

systems perform poorly for tasks such as query entry. 

In this experiment, we measure the performance of a word 

prediction model which uses a standard dictionary and show a 

21.9% improvement if we simply replace the standard dictionary 

with a task-specific dictionary.  Although no mobile text 

prediction company would release to us their proprietary 

dictionary, we simulate the standard dictionaries by using the 

word frequencies found in the British National Corpus (BNC). 

The British National Corpus is a 100 million word collection of 

samples of written and spoken language from a wide range of 

sources, designed to represent a wide cross-section of current 

British English, both spoken and written [10].6 

The test set for all experiments was the set of ~1 million 

September 2006 SMS queries. There were a total of 1,803,470 

words and 10,488,231 characters (including spaces between query 

words) in the test set. Assuming multi-tap input from a 9-key 

keypad the query set would require 22,835,152 key presses to 

enter. On average each query had 2.0 words (median = 2, standard 

deviation = 1.0) and each word had 5.3 letters (median = 5, 

standard deviation = 2.3) 

Using the word frequencies generated from the British National 

Corpus to train our word prediction model, the number of key 

presses needed to enter the test set of queries decreased to 

18,797,938; a 17.7% improvement over having no text prediction 

system.  However, only 51.3% of all query words were 

successfully predicted although the vast majority – 86.9% of 

query words were present in the BNC. Furthermore, the key press 

savings for individual words was consistently small; on average, a 

word was predicted when 2.6 characters remained in the word (an 

average savings of 5.4 key presses per word) and only 28.5% of 

words were completed with three or more remaining letters 

(distribution shown in Figure 2). By all our measures, using the 

                                                                 

6 Many text prediction systems have enhanced their dictionaries 

with emoticons (e.g. “;)” to represent the “wink and smile” 

emotion) and common slang (e.g. “l8tr” for later).  Their 

omission from the BNC does not pose a significant problem 

because communication slang and emoticons are not used 

widely in mobile queries. 

BNC word frequencies to predict queries is minimally effective. 

Unfortunately we believe this approximates the performance of 

existing word prediction systems that are based on static language 

dictionaries for entering search queries. 

In considering the task-based context of the text entry we made 

our first improvement to the query prediction system by replacing 

the general language corpus (BNC) with a set of words which is 

more representative of mobile search queries.    We train our 

prediction models using a past query corpus (PQC) which 

contains 5 million queries gathered from Google’s SMS logs from 

January-August, 2006.  The query diversity of SMS local search is 

lower than that of mobile web search [1]. Our training set consists  

of 10.5 million words, with approximately 200,000 unique words. 

The top word accounts for over 2% of overall query volume and 

the top 10% of words accounted for well over 50% of overall 

query volume.  

We observed a significant decrease in the number of key presses 

needed to enter the test set of queries by retraining our prediction 

model on a task-specific corpus. 14,683,374 key presses were 

needed to enter the test queries using the PQC. This is a 21.9% 

improvement over the BNC model and a 35.7% improvement 

over having no text prediction system. 

Additionally there was a dramatic increase in the percent of query 

words successfully predicted to 75.2%. The percent of query 

words present in the PQC did also increase, but at a rate lower 

than the improvement; the PQC contained 98.9% of test words.  

On average, the letters saved per word predicted increased to 3.2 

(which translates to an average of 7 key press savings per word) 

with the median improving significantly. 49.3% of words were 

predicted with 3 or more letters remaining (distribution shown in 

figure 2).   
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Figure 2: Number of words predicted, grouped by letters 

saved per predicted word. 

Figure 3 is a histogram of average key presses saved for words of 

a particular length.  With both models, the longer the word, the 

more key presses are saved. It is interesting to note that the PQC 

model outperforms the BNC model in letters saved for all word 

lengths except where word length equals 3 and 18. Perhaps this is 

because the common 3 letter words in search queries (and, the) 

are better represented in by the BNC word frequencies. We 

attribute the BNC improvement in 18 letter words to the sparsity 

of words at that length in both the training at testing sets.  
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Figure 3: Number of words completed, grouped by number of 

letters saved 

 

If we consider the performance of the PQC model with query 

completion (versus single word completion), we see a further 

improvement: up to a 40.9% reduction in key presses over having 

no text prediction system in place. Of the query completions that 

were offered, 34% were accurate completions. The tradeoff 

between the improvement in query entry and interface clutter 

added to the user interface should be evaluated through user 

studies. This is left for future work.  

5.2 Location Based Signals 

In this section, we examine the utility of location based signals for 

query prediction.  Location-based services (LBS) are often touted 

as the “killer” applications for mobile devices.  There is strong 

evidence indicating that location-based searches are popular 

among mobile searchers: a study of Google’s 2005 mobile search 

logs found that local searches were the 4th most popular query 

category on traditional phones, and accounts for the majority of 

searches on PDA devices [1].   

The appeal of mobile LBS is the potential to automatically apply 

knowledge of the user’s current location to the particular 

application. There is ample anecdotal evidence in Google’s query 

logs to support the claim that location influences a query. For 

example, in El Paso, Texas, movie goers are much more likely to 

query for the term “cinemark” than they are “amc” which seems to 

be the theatre of choice in most major cities.  In Sante Fe, Arizona 

and Springfield, Missouri, queries for “sushi” are 1000 times less 

likely as in New York City, San Francisco or Los Angeles. The 

query “Alcatraz” is queried with much higher probability in San 

Francisco, CA than any other city in the US. Similar examples can 

be found throughout the logs; this provides an indication that 

location-based signals will further improve our system.  

In the location based model, we combine the application 

knowledge (PQC) with information gained by the location signal.   

We use the PQC, but modify the probabilities associated with 

each word based on the value of the location signal. In order to 

take into account a user’s location, we created a model that 

combined the individual probabilities a word would occur in a 

city, county and state and country in a linear function; we 

essentially created a geo-spatial smoothing function. 

The model generates the top word prediction by weighting the 

word probabilities generated from each location level: 

A*Probability(word | prefix & city) + B*Probability(word | prefix 

& county) + C*Probability(word | prefix & state) + 

D*Probability(word |prefix). To determine the coefficients for 

each probability, we performed a linear regression on the data.   

Using the location signal in the word-based prediction model gave 

us an overall improvement of 40.1% over having no text 

prediction; a 6.8% improvement over using only prefix-based 

frequencies from the PQC. The average key presses saved per 

word predicted was 7.5 and the percent of words predicted 78.3%. 

To further verify that we did not over-train our model, we also 

predicted approximately 1 million queries made in October. The 

performance measurements were very similar (a 39.7% 

improvement over no prediction, and 6.5 % improvement over 

using only prefix-based frequencies from the PQC) 

The query-based model presents a further improvement to 46.4% 

improvement over having no text prediction system, and the 

success rate of query completion rose to 40.3%. 

5.3 Non Location Based Signals 

Knowledge of the user’s carrier, the hour and day of week she was 

querying did not improve the query prediction models. As shown 

in Table 5, no significant improvement was gained by considering 

these signals. There was low variation in performance across each 

carrier, hour of day and day of week.  

In addition to considering each of these signals alone, we created 

smoothed models for the hour and day signals. For the smoothed 

hour model, we looked at the probability the word occurred in a 

specified hour and if the specified hour was in the morning 

(before noon but after midnight) we evaluate the probability that 

the word occurred in the morning; otherwise we evaluate the 

probability that the word occurred in the evening. We expressed 

this as P(word | hour) = A*P(word | hour) + 

B*P(word | am_pm) + C*P(word), with the coefficients 

defined after performing a linear regression on the data. However 

we did not see an improvement with this model; this is due to the 

fact that the query diversity did not reduce significantly when we 

split the set into morning queries and evening queries.   

We also combined these signals with location; for example we 

considered the combination of the user’s location and hour of day.  

Again, we determined the coefficients through linear regression. 

However, we did not see any improvement. In fact, there was a 

degradation in performance.  We believe the degradation is due to 

the sparsity of information created by the number of data 

segments required for using these models.  

5.4 Summary of Results 

Table 1 summarizes the effect of each contextual signal on query 

prediction. We improved query entry by 46.4% when taking into 
account the contextual signals of user location and application in 

use. To provide a baseline comparison to current word prediction 

systems, the first row presents results for word-based query 

prediction when no signals were considered, as is the case in 

standard word prediction systems. We simulate the standard 

dictionaries by using the word frequencies found in the British 

National Corpus (BNC). Our system presents an 34.9% 

improvement over these standard word prediction systems. 



By considering contextual signals in word prediction, we not only 

decrease the number of key presses needed to enter a query, but 

we also increase the coverage of words predicted. Whereas the 

BNC predicts only 51.3% of words,  we increase the coverage by 

to 80.1% when we use the PQC and location signals in the query-

based prediction model.  

All of our results are based on the assumption that we can only 

show one suggestion to the user. By imposing this constraint on 

the user interface, we may not be exploiting the full information 

gain inherent to the user’s context. Next, we discuss variations on 

the interface, and how they impact the improvement of the system.  

6. EFFECTS OF DIFFERENT USER 

INTERFACES 

In addition to exploring various contextual signals, we explored 

the impact of different user interfaces to the query prediction 

system. The system presented in this paper assumed one 

suggestion was shown to the user, and the user was inputting the 

query from a 9-key keypad. This section will show the effect on 

the improvements reported when those assumptions do not hold. 

6.1 N-word suggestions 

Above, we described an interface which will display one query or 

word suggestion to a user. This is quite likely the simplest 

interface for the user to understand and use. Here, we explore how 

much of the potential benefit of our system is lost due to the 

interface constraint of showing only one suggestion per prefix.   

To do this, we measure if we have improved the probability of 

predicting a correct word.  At each prefix length we measure the 

average number of words with probability of occurrence greater 

than or equal to the probability of the target.   This number is the 

number of words that would be required to be displayed in order 

for the user to select the correct target word - this statistic reveals 

by what percent we have decreased the space of word prediction 

possibilities.  The results are shown in Table 2.  

By adding the location context, we significantly reduce the 

number of queries that we would need to show on average to 

produce the correct word completion. The decrease in words 

required to be shown is on average 29% better than PQC model.   

Table 2: Average number of words with probability of 

occurrence greater than or equal to the desired word. 

Prefix length PQC Model PQC+ location Model 

1 241.5 121.2 

2 39.9 20.7 

3 6.7 4.0 

4 2.2 1.7 

We are not suggesting hundreds of words be displayed to the user; 

of course this would lead to a terrible user experience. We 

quantitatively illustrate the reduction in the prediction space only 

to give a sense of magnitude of information that is lost from the 

contextual signal when we restrict the interface to one key press.  

Additionally, this reduction is significant because it suggests UIs 

that display more than one suggestion may be more appropriate 

for query completion. Figure 3 shows the improvement curve as 

the number of suggestions presented to the user increases. As we 

can see, after four suggestions, the rate of improvement decreases. 

This can further guide interface design by providing an upper 

bound on the number of suggestions which will make a significant 

impact on the user experience.  

40

45

50

55

60

65

1 2 3 4 5 6 7 8 9 10

number of suggestions shown

%
 i
m
p
ro
v
e
m
e
n
t 
o
v
e
r 
n
o
 p
re
d
ic
ti
o
n

 

6.2 QWERTY keyboard 

In computing the key presses saved in the experiments outlined 

above, we assumed query entry occurred with a 9-key keypad, 

which is prevalent on mobile phones. The impact of using a 

QWERTY keyboard should not influence the relative 

improvement context provides for query prediction because the 

Figure 3: Improvement in the query prediction system as a 

function of the number of word suggestions shown on the 

interface. 

Table 1: Summary of Results 

 

% improvement over 

no text prediction 

average key presses 

saved per word predicted 

% words 

predicted 

prediction using British National Corpus 17.7 5.4 51.3 

prediction using past query corpus (word-based model) 35.7 7.0 75.3 

prediction using past query corpus & carrier (word-based model) 35.8 7.0 75.1 

prediction using past query corpus & day (word-based model) 35.7 7.0 74.9 

prediction using past query corpus & hour (word-based model) 35.9 7.0 75.1 

prediction using past query corpus & location (word-based model) 40.1 7.5 78.3 

prediction using past query corpus & location (query-based model) 46.4 8.3 80.1 

 



distribution of letters saved is equal to the distribution of letters 

pressed.  

We measured the improvement of the location-based prediction 

system using the word-based model, assuming the queries were 

being entered from a full QWERTY keyboard. The improvement 

over having no prediction was 32.8%. This improvement is 

slightly deflated from the one reported for query entry on a 9-key 

keypad  because the number of key presses need to “select” a 

word remained constant at 1 across both keyboards.  For example, 

using multi-tap based measurements, we gained a key press 

improvement when the user selected a completion when there was 

only one letter left to type in the query (since the average number 

of keypresses to specify a letter is 2.2). In contrast, if we assumed 

use of a QWERTY keyboard, no improvement would have been 

gained by predicting the last letter of a word.  

7. CONCLUSION AND FUTURE WORK 

We were able to improve query entry by 46.4% when taking the 
user’s location and the application context into account. This 

paper presents conclusive evidence that context can improve 

query entry. We are currently working on designing, 

implementing and evaluating the usability of prediction interfaces 

that are integrated with a mobile client application.  

There are several challenges to implementing this system on a 

mobile phone: namely the constrained storage and computation 

power of mobile devices. In our initial prototypes, in order to 

resolve problems with the phone’s space constraints, we only 

store parts of the dictionary that are most relevant to the user’s 

current context. Our approach will ease the phone’s burden of 

computation by pre-computing word probabilities on the server 

side. When there is a change in the user’s context, the server will 

be notified via an http request to the server. The server’s response 

will indicate to the application how to adapt the word dictionary 

to the user’s current context. 

Additionally, progress can be made in the design of the user 

interface. We have shown the significant improvement that can be 

gained by showing more than one word completion at a time. 

However, there may be a degradation in user-perceived 

improvement if more than one completion is shown. Although the 

number of key presses to enter a query decreases, it make take 

more time to find and select the desired query completion as the 

interface will be more cluttered.  Designing interfaces that offer 

more suggestions which can be accessed with a low number of 

key presses and low cognitive overhead is an interesting avenue 

for future study. Perhaps the easiest way to quantify the tradeoff 

of more suggestions and cognitive load is by measuring the time 

spent entering a query in addition to the key press savings. 

Studies are needed to determine whether a non-stable query 

prediction system is confusing for users. Is it confusing if the 

letter “s” triggers the completion “sushi” when the user in San 

Francisco, but triggers the word “soup” when that user visits 

North Dakota? Should we provide a means for the user to “turn 

off” context-based suggestions, or to artificially set her context 

(e.g. by specifying a location other than her current location) ? 

In addition to the design, implementation and evaluation of the 

user interface, there are several immediate avenues for further 

improving query prediction model itself. First, we can improve 

upon the model used to generate the predictions. Location based 

models may be improved by alternate smoothing methods – such 

as ones that use geographical constraints. In these models, the 

queries in a nearby city will be taken into account in the query 

prediction. 

We can also incorporate more signals into the query prediction 

model. For example, with a user’s explicit permission, it would be 

interesting to study the impact of personalized cues – such as an 

individual’s past query behavior, and location history (does the 

user live in the location? Is she new to it? What queries does she 

frequently submit in new locations?).  

Finally, using context to improve other pre-query tasks should be 

considered. For example, the task of formulating the query can be 

improved by suggesting queries to the user which are most 

relevant to her context before she begins typing. This may create a 

search interface that eliminates typing altogether from the query 

entry process.  
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